Symmetric duality for multiobjective fractional variational problems with generalized invexity
نویسنده
چکیده
The concept of symmetric duality for multiobjective fractional problems has been extended to the class of multiobjective variational problems. Weak, strong and converse duality theorems are proved under generalized invexity assumptions. A close relationship between these problems and multiobjective fractional symmetric dual problems is also presented. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Nonsmooth Multiobjective Fractional Programming with Generalized Invexity
In this paper, we consider nonsmooth multiobjective fractional programming problems involving locally Lipschitz functions. We introduce the property of generalized invexity for fractional function. We present necessary optimality conditions, sufficient optimality conditions and duality relations for nonsmooth multiobjective fractional programming problems, which is for a weakly efficient soluti...
متن کاملMultiobjective Variational Programming under Generalized Vector Variational Type I Invexity
Mond-Weir type duals for multiobjective variational problems are formulated. Under generalized vector variational type I invexity assumptions on the functions involved, sufficient optimality conditions, weak and strong duality theorems are proved efficient and properly efficient solutions of the primal and dual problems.
متن کاملOn efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems
In this paper, we extend the notions of ( , ρ)-invexity and generalized ( , ρ)invexity to the continuous case and we use these concepts to establish sufficient optimality conditions for the considered class of nonconvexmultiobjective variational control problems. Further, multiobjective variational control mixed dual problem is given for the considered multiobjective variational control problem...
متن کاملMultiobjective variational programming under generalized ( V , ρ ) - B - type I functions
Abstract: In this paper, we generalize the (V, ρ)-invexity defined for nonsmooth multiobjective fractional programming by Mishra, Rueda and Giorgi (2003) to variational programming problems by defining new classes of vector-valued functions called (V, ρ)B-type I and generalized (V, ρ)-B-type I. Then we use these new classes to derive various sufficient optimality conditions and mixed type duali...
متن کاملSymmetric duality for multiobjective fractional variational problems involving cones
In this paper, a pair of multiobjective fractional variational symmetric dual problems over cones is formulated. Weak, strong and converse duality theorems are established under generalized F-convexity assumptions. Moreover, self duality theorem is also discussed. 2007 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 176 شماره
صفحات -
تاریخ انتشار 2006